
JOURNAL OF COMPUTATIONAL PHYSICS 53, 209-226 (1984) 

Finite Analytic Numerical Method for Unsteady 
Two-Dimensional Navier-Stokes Equations 

CHING-JEN CHEN * 

AND 

HAMN-CHING CHEN’ 

Energy Division and Iowa Institute of Hydraulic Research, 
University of Iowa, Iowa City, Iowa 52242 

Received June 2, 1982; revised December 16, 1982 

The main purpose of this paper is to develop a finite analytic (FA) numerical solution for 
unsteady two-dimensional Navier-Stokes equations. The FA method utilizes the analytic 
solution in a small local element to formulate the algebraic representation of partial 
differential equations. In this study the combination of linear and exponential functions that 
satisfy the governing equation is adopted as the boundary function, thereby improving the 
accuracy of the finite analytic solution. Two flows, one a starting cavity flow and the other a 
vortex shedding flow behind a rectangular block, are solved by the FA method. The starting 
square cavity flow is solved for Reynolds numbers of 400, 1000. and 2000 to show the 
accuracy and stability of the FA solution. The FA solution for flow over a rectangular block 
(H x H/4) predicts the Strouhal number for Reynolds numbers of 100 and 500 to be 0.156 
and 0.125. Details of the flow patterns are given. In addition to streamlines and vorticity 
distribution, rest-streamlines are given to illustrate the vortex motion downstream of the block. 

I. INTRODUCTION 

When a differential equation cannot be solved analytically, numerical methods are 
employed. Most of the numerical methods, including the present finite analytic (FA) 
method, bear the following similarities. First, all methods decompose the total region 
governed by differential equations into a number of small elements or grid points, and 
then replace the continuous solution of the differential equation with discrete values 
at grid points of elements. Second, all methods derive an algebraic equation from the 
differential equation with suitable difference approximations or suitable profile 
functions of dependent variables between nodal points. Third, the resulting system of 
algebraic equations is solved with proper boundary and initial conditions to obtain 
the numerical solution for all of the grid points. The numerical methods are generally 
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distinguished by how the corresponding algebraic representation of the differential 
equation is derived. Several commonly used methods in deriving the discrete 
algebraic equation in the finite difference method are Taylor-series expansion and 
control volume (or flux, or box) formulation, For the finite element method, the 
variational formulation and method of weighted residuals are often used. The finite 
analytic method presented by Chen et al. [l-4] invokes another means of deriving 
the algebraic equations. Unlike finite-difference or finite-element methods, the discrete 
algebraic equation is obtained from the analytic solution for each local element in the 
finite analytical method. This paper presents the development of finite analytic (FA) 
numerical method to solve unsteady two-dimensional Navier-Stokes equations. 

In fluid flow and heat transfer problems, certain difficulties, such as numerical 
instability and slow convergence, are encountered in solving Navier-Stokes equations 
or convective transport equations when convective terms are significant. In the finite 
difference formulation, the difficulty of numerical instability is overcome by 
considering a central difference approximation for the diffusion term and a backward 
(upwind) difference for the convective term [5, 61. Spalding [6] improved the upwind 
difference by utilizing the exact solution for the steady one-dimensional transport 
equation to derive an exponential scheme. Patankar [ 71 developed an approximation 
called the power-law scheme and used it extensively in the control volume 
formulation of 2D and 3D unsteady convective transport problems. While the 
numerical instability can be avoided by the generation of exponential or similar 
schemes, serious false diffusion may occur, as shown by Patankar [7], when the flow 
is skewed to the grid lines, and when there is a nonzero gradient of the dependent 
variables in the direction normal to the flow. This false numerical diffusion is due to 
an improper approximation of the differential equation by an algebraic expression. In 
Navier-Stokes equations it is the convective term that creates difficulties. 

In finite element formulation, a similar “upwind scheme” was derived recently by 
Heinrich et al. [8], improving the weighting function of standard Galerkin 
formulation with modifying functions and a set of optimal parameters. The exact 
solution in one-dimensional cases is recovered in this approach when the optimal 
parameters are used, and the same optimum parameter can be employed to derive a 
9-point formula for the 2D convective transport equation. The 9-point formula thus 
obtained provides a gradual shift to upwind when the convective velocity on the 
windward is significant. However, Gallagher et al. (91 showed that in both diffusive 
(Re < 1) and convective (Re $ 1) dominant limiting cases, the resulting 9-point 
formula does not give physically reasonable asymptotic behaviors. Besides, when 
unequal grid size is considered, the result may become increasingly unreasonable. 

In previous finite analytic formulations, the local analytic solution for the steady 
convective transport equation in a small element was obtained by Chen et al. [ l-41 
for locally linearized governing equations. They adopted the second-order polynomial 
to approximate the boundary condition for all boundaries in each small element and 
showed that the finite analytic solution, by virtue of its analytic nature, can properly 
account for the influence of the skewed convective vector and the magnitude of the 
convection. In this report the FA solution for Navier-Stokes equations are further 
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modified by considering the boundary approximation function to be a combination of 
exponential and linear functions which are solutions of the governing equation. 
Furthermore, the FA solution is extended to include unsteady flows. As an 
application the FA method was first tested for prediction of unsteady flow in a two- 
dimensional cavity and then applied to solve the flow over a rectangular obstacle 
behind which vortex shedding occurs. 

II. THE FINITE ANALYTIC METHOD 

The basic idea of the FA method is the incorporation of analytic solutions in the 
numerical solution of partial differential equations. To illustrate the basic principle of 
the FA method we consider a partial differential equation (PDE) LQ =A where L is a 
linear or nonlinear partial differential operator and f is an inhomogeneous term that 
depends on the independent variables, such as X, y, and t. The PDE is to be 
numerically solved with proper boundary and initial conditions. In the FA method 
the problem is first subdivided into small elements. For example, a typical element, 
2h X 2k, in a given time interval At = tk - tk-’ is shown in Fig. 1, where a node 
p(i,j) at given time tk or tkp’ is surrounded by neigboring node points EC (east 
center), WC (west center), SC (south center), NC (north center), NE (northeast), 
NW (northwest), SE (southeast), and SW (southwest). In general, the subscript EC 
corresponds to (i + IJ). Once the problem is subdivided into small elements, an 
analytic solution for the PDE in each element may be obtained. 

In cases where the PDE is nonlinear, such as the Navier-Stokes equations, the 
nonlinear equation may be locally linearized in each element. In this fashion the 
overall nonlinear effect can still be approximately preserved by assembly of local 
analytic solutions. For example, we consider the incompressible two-dimensional 
Navier-Stokes equations cast in the dimensionless streamfunction-vorticity for- 
mulation 

Re (t, + (~0, + (43,) - (L, + &J = 0, (1) 
v2iy = -& (2) 

u=‘Yy, 0 = --v/x, (=U,-Uu,. (3) 

FIG. 1. Finite analytic element. 
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Here space and time variables (x, y, t) are dimensionless and normalized by a 
reference length quantity H and a reference time quantity H/U,. The velocities u and 
v are normalized by the reference velocity U,,. The Reynolds number is Re = UoH/v, 
velocities u and v are normalized by the reference velocity U,. To linearize the 
Navier-Stokes equations in an element we let 

u = u, + u’, v = VP + v’, 2A=Reu,, 2B=Rev,, (4) 

where u, and up are the velocity components at node p, the deviation of the velocity 
components in the element from that at node p are U’ and o’, respectively. They are 
in general small if the element is reasonably small but can become significant when 
multiplied by the Reynolds number. Equation (1) under this approximation can be 
written as 

If the right side f is considered to be a constant in an element, then a simple 
analytic solution can be obtained for Eq. (5) at time tk when proper boundary 
conditions are specified or 

l= fn(&&), &(x), MY), Mu), k k x, Y, L/I (6) 

where cN, &, rE and <, are the northern, southern, eastern, and western boundary 
conditions, respectively, for the element 2h X 2k at tk. 

For numerical purposes the boundary conditions tN, &, rE, and cW may be 
specified in terms of nodal values along the boundary, e.g., 5, = fn(&, &, <sH., x). 
Substituting the boundary condition into Eq. (6) and evaluating it at the point p(i,j) 
at time tk, one has the finite analytic algebraic formula for the interior nodal <, as 

Here c’s are known analytic coefficients multiplying the corresponding boundary 
nodal values cEC etc., and the particular solution f, representing the right side of 
Eq. (5). The system of algebraic equations thus generated for all elements can be 
solved using the proper boundary conditions of the problem and will provide the FA 
solution for vorticity distribution. Similarly, Eq. (2) for stream function can be solved 
likewise by deriving the corresponding finite analytic representation with proper 
boundary conditions. This is the essence of the FA method. 

III. FINITE ANALYTIC SOLUTION 

In this section we derive the local analytic solutions for the unsteady two- 
dimensional Navier-Stokes equations cast in stream functions and vorticity 
formulation, as given in Eqs. (l)-(3). In order to derive an analytic solution in an 
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element, as shown in Fig. 1, we linearize Eq. (1) as given in Eq. (5). The ellipticity of 
Eq. (5) in space requires that the boundary conditions &, , &, &, and & be specified. 
Although many approximate functions can be used to approximate the boundary 
condition where three nodal values are available for each boundary, it is best to 
choose the approximate function from the class functions that satisfies the governing 
equation. For Eq. (5) one finds that a constant, a linear function (Ay - Bx), and an 
exponential function, exp(L4x + 2By), satisfy the homogeneous part of Eq. (5). These 
functions can be considered as natural or basic modes of the solution form for Eq. (5) 
out of many other possible forms. Thus, for example, the western boundary condition 
of the vorticity transport Eq. (5) may be approximated by 

t,(y) = a, + a, y + u2(e2’!: - 1). (8) 

where the constants a,, ui, and a, can be specified by the three nodal values of 
vorticity on the boundary, namely, 

a,=<,,, 

U,=&,,- &w - coth Bk(t,w + &w - 25,~) 12 

a2 = (rNW + rsw - ‘X,,)/P a* W. 

(9) 

The boundary condition for the north, south, and east sides, i.e., rN, &, and rb, 
can be similarly approximated. 

Equation (5) with boundary conditions <, , &, &, and &, specified by the eight 
boundary nodal values, can then be solved analytically by the method of separation 
of variables. In this investigation the inhomogeneous term, f, of Eq. (5) which 
contains the perturbation term of convection and unsteady term, is treated as a 
known constant. When the analytic solution is evaluated at the interior nodep(i,j) of 
the element at time tK, we have Eq. (7) with the finite analytic coefficients C,,,, etc., 
as 

CEc = EBeeAh, C = Eem”h-Rk 
NE 

C,, = EBeAh, C,, = EeAhpRk, 

C,, = EAeBk, C,, = Ee-Ah+Bk, 

C,, = EAe-Bk, C,, = EelhtRk, 

c, = 
Ah 

2(A* + B*) [‘NV4 + %‘, + cSW - cN, - c,, - c,,] 

Bk 
+ 2(A2+B2) (‘SW + ‘SC- + c,, - cN, - c,, - c,,], 

(10) 

(11) 
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where 

E= 
1 

4 cash Ah cash Bk 
-Ah E, coth Ah - Bk E; coth Bk 

EA=2Ah 
cosh2 Ah 
sinh A h E2, 

EB = 2Bk 
cash’ Bk 
sinh Bk ES, 

A,,, = (A2 + B* + ,u;)“*, 

Ah = (A* $ B2 +&,2)“2, 

-t-l)@’ (Lh) 
E2 = m;, [(Ah)2 + (J,h)2]2 coshpu,k’ 

-(-lY- GLh) 
E’ = .j, [(Bk)2 + (,l;k)2]2 cosh&h ’ 

iu,= 
(2m- 1)n 

2,, 3 

(2m- 1)7r 
.&I= 2k * 

(12) 

(13) 

(14) 

A relationship between E, and E; can be found to be 

h*E, - k*E; = 
Bh tanh Ah - Ak tanh Bk 

4AB cash Ah cash Bk ’ (15) 

The evaluation of the inhomogeneous term f,, which contains the unsteady term and 
the perturbed convection term, is 

(cz,), = <r; - r;- ‘Y4 
Fp = Re[WO, + (~‘Oyl 

(16) 

= Re[(u,, - up> d& - (uwc - up) &1/2h 
+ Re[(u,, - up> lNP - (us, - up> LlPk 

(17) 

where EP, WP, NP, SP, as shown in Fig. 1, denotes the nodes located *h/2 and 
*k/2 from the node P. The values of rEP, <wp, tNP and rsp can be evaluated from a 
similar approximation function used in the boundary approximation like Eq. (8). 

Substituting Eqs. (16) and (17) for f, in Eq. (10) one has 

where II denotes the boundary nodes EC, NE, NC, etc. 
In general the finite analytic coefficient, C,,, C,, , etc., are functions of local cell 

Reynolds number 2Ah and 2Bk which are different from one element to another due 
to the locally linearized velocity up and up and the grid sizes h and k which vary from 
element to element. Two typical FA solutions of Eq. (7) with f= 0 and h = k are 
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schematically illustrated in Eqs. (19) and (20) for two different convective vectors 
and Reynolds numbers, 

(2Bk = 0) 

In Eqs. (19) and (20) the value in the block is the FA coefficient of the corresponding 
node to be multiplied by the nodal value &,. The summation of these products 
provides the FA coefficient of <, for the element given in Eq. (7). These FA coef- 
ficients can be interpreted as the percentage influence of the boundary node <,, on the 
interior node & under the given convective vector with components of 2Ah and 2Bk. 
Equation (19) shows that when the convection comes from the southwest corner with 
cell Reynolds number of 2Ah = 2Bk = 10, the FA analytic solution predicts that the 
influence of the southwest boundary node, tsw, on the interior node & will be the 
strongest, while the downstream node, NE, has practically zero influence at 10e9. On 
the other hand Eq. (20) shows that when the convection comes directly from the west 
side with large cells Reynolds number, the influence of the WC node on the p node is 
at a dominant strength of 98%, while the other two upwind nodes, NW and SW, are 
merely 1%. The other boundary nodes are effectively negligible at this high cell 
Reynolds number. These two examples illustrate that the FA solution can properly 
predict with analytic means the influence of the boundary node on the determination 
of the interior node &, with any skewed convective vector and magnitude. This is a 
distinct feature of the FA method. 

When the vorticity function is known, the stream function can be solved from 
Eq. (2). The finite analytic solution of stream function in an element 2h x 2k can be 
easily obtained if one notes that Eq. (2) is a special case of Eq. (5). By replacing r by 
w and f by c in Eq. (7) and letting A = B = 0, one has the analytical algebraic 
representation of stream function vP at the node p as 

(21) 

Here CA and CL are finite anlaytic coefficients given in Eqs. (10) and (11) with 
A = B = 0. Furthermore, these FA coefficients, because of A = B = 0, are invariant. 
For example, with h = k, CL, = C&, = CL, = CA, = 0.2053 15, CL, = CL, = C’;, = 
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C&, = 0.044685, and Cl, = 0.294685/z’. Equations (18) and (21) are solved by a line- 
by-line method in the calculation. For Eq. (21) an overrelaxation factor of 1.6 was 
used in the iteration, while for Eq. (18), no relaxation is needed since a time-marching 
procedure is adopted. In the computation, the only summation term that needs to be 
evaluated numerically is E, in Eq. (12). Depending on the Reynolds number, 5 to 15 
terms of summation are enough to obtain accurate FA coefficients to within 10. ‘. 
All other FA coefficients in Eq. (10) can be calculated without series summation. 

The difference between the present finite analytic method and that proposed by 
Dennis and Hudson [ 101 is that in the present FA method the exact solution to the 
linearized partial differential equation for an element is solved and used to formulate 
the g-point algebraic equation relating the interior node to the neighboring eight 
nodes. The boundary conditions used are a combination of three natural solution 
forms: constant, linear function, and exponential function. On the other hand, the 
five-point finite difference [ 101 is derived for a linearized ordinary differential 
equation along a line. As a result the five-point formulation cannot incorporate the 
corner points. This, pointed out by Patankar (71, will produce false numerical 
diffusion if the flow approaches the element from a skew direction. The g-point finite 
element formula proposed by Barrett and Demunski [ 111 was based only on the 
exponential trial and test functions and the other natural solution forms of the two- 
dimensional convective transport equation (such as, constant and linear function) 
used in the FA method are excluded. The stability and accuracy of the finite 
difference [ 101 and finite element [ 111 numerical methods were only tested at 
Re = 400 in the cavity problem. In the present method Reynolds numbers as high as 
2000 in the unsteady cavity problem were tested with good results. The use of 
separation of variables to obtain the analytic solution seems to be cumbersome, but 
we found that the results are quite good. Another approximate solution obtained from 
the collocation was also investigated. The result is less satisfactory since the 
collocation method required only satisfying the eight discrete boundary nodal values 
while disregarding the functional behavior between the boundary nodal values. 

IV. STARTING FLOW IN TWO-DIMENSIONAL CAVITY 

In order to test the FA method we choose a model problem of starting flow in a 
two-dimensional square cavity (H x H) where the flow starts from rest when the 
bottom surface of the cavity wall is set to a tangential uniform motion with a speed 
of U,. The governing equation for the flow is given in Eqs. (l)-(3). The boundary 
conditions are v/ = 0 and vX (or w,) = 0 for stationary wall, and v/ = 0, 11/y = 1 for the 
bottom moving wall. The vorticity boundary condition for Eq. (1) for example, on 
the left stationary wall x = 0, can be obtained from Taylor-series expansion of w, or 
r(O, y, t) = -2v(h, y, t)/h*. Boundary conditions for the other two stationary walls 
can be similarly specified. On the moving wall y= 0, 5(x, 0, t) = 
-2w(x, k, t)/k2 + 2/k. The vorticity conditions for the two upper corners are r = 0, 
while for the two lower corners they are < = 2/k. The initial conditions are taken to 
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FIG. 2. Evaluation of streamfunction in cavity for Re = 1000. 
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be at rest or I+U = r = 0. The numerical solution at the kth time step is obtained by 
solving Poisson Eq. (2) or Eq. (21) for the stream function first with line-by-line 
iterations for each time interval. The velocity components u and v are then calculated 
and substituted into the vorticity transport equation, Eq. (18). With the vorticity 
boundary conditions evaluated from the stream function just obtained, the vorticity 
transport equation is solved. Subsequently the correction term F, in Eq. (18) is 
tabulated and the computation is repeated for the next time step by solving Eq. (21) 
again. A time increment of 0.1 is used in the first 200 time steps. Thereafter, a larger 
time increment of 0.4 is used. 

Figure 2 illustrates the FA numerical result for Reynolds number of 10” with 
uniform grid size (h = l/40). The figure shows the time sequence of flow development 
at t = 1, 3, 5, 10, 20, and 30. The flow profile at t = 30 and 60 are found to be about 
the same. At t = 60 the maximum stream function v/,,, is 0.1026 and the vorticity at 
the vortex center is r= 1.896. The FA solution given here shows that it is stable and 
accurate and converges rapidly. The large time solution is verified well with previous 
calculations of Chen et al. [3] and many others [ 12-15 ] as that shown in Table I. 
Recently Quartapelle [ 161 calculated the transcient flow in a two-dimensional square 
cavity with finite difference scheme and showed that the solution is unstable and the 
vorticity near the moving surface exhibits a large oscillatory behavior. Quartapelle’s 
calculation was stopped at t = 15. This instability phenomenon is not encountered in 
the present FA solution. In the FA solution the separation of flow at the upper corner 
appears as early at t = 5, but was not predicted by Quartapelle. Figure 3 gives the FA 
solution for steady streamlines and vorticity lines for Reynolds number of 400, 1000, 
and 2000. Stable numerical solutions are obtained. Experimentally Pan and Acrivos 
[ 171 reported that the transition from laminer to turbulent flow occurs at Reynolds 
number of approximately 5000. 

TABLE I 

Comparison of Large Time Cavity Flow Numerical Results for Re = 1000 

Reference Grid wt., w LL 

I31 41 x41 0.0946 1.62 

1121 81 x 81 0.1132 2.08 

I131 81 x81 0.99 - 

I141 65 x 65 0.114 1.985 

1151 51 x51 0.977 1.83 

Present 41 x 41 0.1026 1.896 
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Re = 2000 (50 X 50) 
X 

0.6 0.8 1.0 

X X 

FIG. 3. Streamfunction and vorticity for Re = 400, 1000. and 2000. 
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V. VORTEX SHEDDING BEHIND AN OBSTACLE 

In the next example consider the vortex shedding phenomenon behind a twodimen- 
sional rectangular block of H x H/4 when it is placed in a uniform flow of velocity 
U,,. The computational domain is chosen to be 26H x 6H to approximate the infinite 
surrounding medium. The block is located 2H downstream from the upstream 
computational boundary, as shown in Fig. 4. The initial vorticity is set equal to zero. 
The boundary conditions are 5 = 0, v =y at the upstream and r, = 0, v/, = 0 at the 
downstream side. The top and bottom boundary conditions are r = 0, v = +3 and 
< = 0, v = -3, respectively. 

Figures 4-8 give the finite analytic numerical solution for Re = 100, 200, and 500. 
The computational grid for Re = 100 in x and y direction are set to h = 0.5 (3 

3 

2 

1 

YO 

-1 

-2 

-3 
012345676 9 IO 11 12 13 14 15 16 17 16 

X Re =lOO t-50.0 

3 

2 

1 

YO 

-1 

-2 

-3 

3 

2 

1 

YO 

-1 

-2 

-3 

X Re=lOO t = 53.2 

X Re-100 t= 56.4 

FIG. 4. Streamline for flow over rectangular block (Re = 100) 
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3 

2- 

l- 

Y o- 

-l- 

-2- 

-31,,, ( , , , , , , /, , , , , , 
0123456789 10 11 12 13 14 15 16 17 

Vorticity X Re = 100 t = 53.2 

3 

2 

1 

YO 

-1 

-2 

-3 
612345678 

s 
10 11 12 13 14 15 16 17 I8 

Streomllne Re = 100 t = 53.2 

0123456789 IO 11 12 13 14 15 16 17 18 

Rest-streamlme X Re = 100 t = 53.2 

221 

FIG. 5. Vorticity, streamline, and rest-streamline for Re = 100. 

nodes), 0.24 (14), 0.5 (lo), 0.8 (20), and k = 0.25 (24), respectively, for a total of 
48 x 2.5 nodes. The grid size for Re = 500 are h = 0.5 (3), 0.25 (14), 0.5 (IO), 0.8 
(20) and k = 0.5 (2), 0.125 (32), 0.5 (2) f or a total of 48 x 37 nodes. The time 
increment for the initial 40 steps is 0.5, thereafter 0.2. It is found that without 
artificial perturbation the unsymmetrical flow pattern begins to appear around t = 30 
behind the block after the transition from the initial zero vorticity field to a 
symmetric flow of two vortices with similar, but opposite, strength formed behind the 
block. In the calculation the accuracy for convergence is set Aty < lop5 and 
At < 10e5 between two iterations. The calculation procedure for each time step is 
similar to the previous example. Figure 4 illustrates the stream function of vortex 
shedding which gives the Strouhal number of S = 0.156 (i.e., shedding 
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I I / I I , I 
012345678 9 10 11 12 13 14 15 I6 17 18 
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2 

-3 
012345678 9 10 11 12 13 14 15 16 17 18 

X Re-200 t-22 

FIG. 6. Streamlines for Re = 200. 

frequency x H/UO). This matches well with experimental measurement of S = 0.16 
given by Blevins [ 181 for a similar two-dimensional block. 

It should be remarked that because of the unsteadiness of vortex shedding the 
streamlines plotted on Fig. 4 are not the streak lines that are normally photographed 
in the experimental visualization. After a vortex breaks off from the block it indeed 
continues winding. However, the vortex also convects rapidly downstream such that 
the velocity vector of any fluid in the vortex is all directed toward downstream. This 
is why no further closed steamline for the moving vortex can be observed in Fig. 4, 
other than the two vortices sucked behind the block. In order to illustrate the vortex 
pattern further downstream, the FA numerical solution of stream function, rest- 
stream function, and vorticity distribution for Re = 100 at t = 53.2 is plotted in 
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X Re q 200 t = 24 

012345678 9 10 11 12 13 14 15 16 17 18 

X Re = 200 t = 25 

FIG. 7. Streamlines for Re = 200. 

Fig. 5. The rest-streamlines are the streamlines as seen by an observer moving with 
the free stream velocity U, toward the block. In this reference frame the ambient fluid 
appears to be at rest with respect to the observer while the block is seen to be moving 
from right to left in the figure. 

Figures 6-8 show the streamline and vortex shedding phenomena of flow behind 
the block at a higher Reynolds number of 200 and 500. We note that the vortex 
shape behind the block at a higher Reynolds number becomes narrower and slim 
compared to that for Re = 100. The shedding frequency or Strouhal number for 
Re = 500 is now predicted to be approximately S = 0.125 for a shedding period of 
t’ = 8, which also correlates well with the experimental measurement of flow over a 
block with sharp front edge by Blevin [ 181. It should be noted here that at Re = 500 

581/53/2-2 
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FIG. 8. Streamlines for Re = 500. 

the flow is either at the brink of transition or in the transition range. However, the 
experimental observation shows that the shedding frequency evolves slowly from 
laminar flow to transition. The Strouhal numbers for various noncircular sections 
compiled by Blevins [ 181 at much higher Reynolds numbers of IO4 or 10’ still fall 
between 0.12 to 0.16. 

It should be remarked here that analytic solutions for various vortex shedding 
immediately behind the block are difftcult, if not impossible to obtain. Fromm and 
Harlow [ 191 attempted to solve numerically the vortex shedding phenomenon behind 
a series of rectangular blocks in a channel by the finite difference method. In their 
calculation a periodic boundary condition is used, i.e., the upstream and downstream 
boundary conditions are set equal to each other. They reported that an artificial 
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perturbation of vorticity is needed to trigger the vortex shedding. In the present 
investigation a single block is considered, hence, the periodic boundary condition is 
not used. Nor in the present study is an artificial perturbation required to trigger the 
vortex shedding. Smith and Brebbias [20] computed the vortex shedding behind a 
thick block with the finite element method and reported that, due to the inherent 
instability of the explicit time integration method used in the finite element 
formulation, the time step must be kept very small. For Re = 100 the time increment 
used is 0.03. In the present calculation the time increment of 0.5 or 0.2 was used. 
Indeed a larger time step can be used in the FA method. 

VI. CONCLUSION 

The finite analytic solution for the unsteady two-dimensional transport equation is 
derived. For every element a 9-point FA algebraic equation is obtained from the 
analytic solution of locally linearized transport equation with the element boundary 
function approximated by a combination of linear and exponential functions. The FA 
solution predicts the starting cavity flow, that the vortex begins to form near the 
downstream side of the moving boundary, and gradually moves to the center of the 
square cavity. The secondary vortex first appears at the downstream stationary wall. 
The FA solution predicts the vortex shedding phenomena in the region behind a 
rectangular block. The predicted Strouhal numbers of 0.156 and 0.125 for Reynolds 
number of 100 and 500, respectively, correlate well with experimental measurement. 

The finite analytic solution is shown to properly describe the influence of 
convection on the solution for fluid flow from low to high Reynolds number. 
Furthermore, it is found that the finite analytic solution is stable at all Reynolds 
numbers investigated and converges rapidly. 
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